

15EC36

Third Semester B.E. Degree Examination, Aug./Sept. 2020 Engineering Electromagnetics

Time: 3 hrs .
Max. Marks: 80
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define Electric Field Intensity, $\overrightarrow{\mathrm{E}}$. Find $\overrightarrow{\mathrm{E}}$ at $\left(2, \frac{\pi}{2}, \frac{\pi}{6}\right)$ due to a point charge located at origin. Let $\mathrm{Q}=40 \mathrm{nC}$.
(04 Marks)
b. Point charges of 120 nC are located at $\mathrm{A}(0,0,1)$ and $\mathrm{B}(0,0,-1)$ in free space. Find $\overrightarrow{\mathrm{E}}$ at $P(x, 0,0)$. Also find the maximum value of \vec{E}.
(06 Marks)
c. Uniform line charges of $120 \mathrm{nC} / \mathrm{m}$ each lie along the entire extent of the three co-ordinate axes. Assuming free space conditions, find $\overrightarrow{\mathrm{E}}$ at $\mathrm{P}(-3,2,-1) \mathrm{m}$.
(06 Marks)

OR

2 a. Derive an expression for electric field intensity at a point in cylindrical coordinate system due to an infinite line charge distribution on Z - axis.
(06 Marks)
b. A point charge $\mathrm{Q}_{1}=10 \mu \mathrm{C}$ is located at $\mathrm{P}_{1}(1,2,3) \mathrm{m}$ in free space while $\mathrm{Q}_{2}=-5 \mu \mathrm{C}$ is at $P_{2}(1,2,10) \mathrm{m}$. i) Find vector force exerted on Q_{2} by Q_{1} ii) Also, find the co-ordinates of P_{3} at which a point charge Q_{3} experiences no force.
(07 Marks)
c. Find the total electric flux crossing an infinite plane at $\mathrm{y}=0$ due to the following charge distributions: - a point charge, 30 nC located at ($1,2,3$).

- Two line charge distributions of $10 \mathrm{nC} / \mathrm{m}$ each located in $\mathrm{x}=0$ plane at $\mathrm{y}= \pm 2 \mathrm{~m}$ extending over a length of 4 m .
(03 Marks)

Module-2

3 a. Define 'Divergence of a Vector' and 'Gradient of a Scalar'.
(04 Marks)
b. Derive the point form of Gauss's law.
(06 Marks)
c. Give the flux density, $\vec{D}=\frac{5 \sin \theta \cos \phi}{\mathrm{r}} \hat{\mathrm{a}}_{\mathrm{r}}, \mathrm{c} / \mathrm{m}^{2}$. Find \cdot Volume charge density

- Total charge contained in the region, $\mathrm{r}<2 \mathrm{~m}$.
- Total electric flux leaving the surface, $\mathrm{r}=2 \mathrm{~m}$.
(06 Marks)

OR

4 a. The value of $\overrightarrow{\mathrm{E}}$ at $\mathrm{P}\left(\rho=2, \phi=40^{\circ}, Z=3\right)$ is given by $\overrightarrow{\mathrm{E}}=100 \hat{\mathrm{a}}_{\rho}-200 \hat{\mathrm{a}}_{\phi}+300 \hat{\mathrm{a}}_{z}, \mathrm{~V} / \mathrm{m}$. Determine the incremental work required to move a $20 \mu \mathrm{C}$ charge a distance of $6 \mu \mathrm{~m}$ in the direction of : i) $\hat{a}_{p} \quad$ ii) $\vec{E} \quad$ iii) $\vec{G}=\hat{a}_{p}+3 \hat{a}_{\phi}-2 \hat{a}_{z}$.
(06 Marks)
b. State and explain continuity equation of current.
(05 Marks)
c. Given the potential field $V=2 x^{2} y-80$, and a point, $\mathrm{P}(2,3,-4)$ in free space, find at ' P '.
i) V
ii) \vec{E}
iii) $\frac{d V}{d N}$ iv)
v) \hat{a}_{N}

Where $\hat{\mathrm{a}}_{\mathrm{N}}$ is the unit vector normal to equipotential surface?
(05 Marks)

Module-3

5 a. Conducting plates at $Z=2 \mathrm{~cm}$ and $Z=8 \mathrm{~cm}$ are held at potentials of -3 V and 9 V respectively. The region between the plates is filled with a perfect dielectric of $€=5 \epsilon_{0}$. Find $\mathrm{V}, \overrightarrow{\mathrm{E}}$ and $\overrightarrow{\mathrm{D}}$ in the region between the plates.

15EC36
b. Let $\mathrm{V}=\frac{\cos 2 \phi}{\rho}$ volts in free space. Find volume charge density at $\mathrm{P}\left(5,60^{\circ}, 1\right)$ using Poisson's equation.
(05 Marks)
c. State the following: i)

Uniqueness theorem
ii) Ampere's law
iii) Stoke's theorem.
(05 Marks)

OR

6 a. Explain Scalar and Vector magnetic potentials.
(05 Marks)
b. Verify Stoke's theorem for $\vec{H}=2 r \cos \theta \hat{a}_{r}+r \hat{a}_{\phi}$ for the path defined by $0 \leq r \leq 1$ and $0 \leq \theta \leq 90^{\circ}$.
c. The magnetic field intensity is given by $\vec{H}=0.1 \mathrm{y}^{3} \hat{\mathrm{a}}_{\mathrm{x}}+0.4 \mathrm{x} \hat{\mathrm{a}}_{\mathrm{z}}, \mathrm{A} / \mathrm{m}$. Determine the current flow through the path $\mathrm{P}_{1}(5,4,1)$ to $\mathrm{P}_{2}(5,6,1)$ to $\mathrm{P}_{3}(0,6,1)$ to $(0,4,1)$. Also find current density, $\overrightarrow{\mathrm{J}}$.
(05 Marks)

Module-4

7 a. Obtain an expression for magnetic force between differential current elements.
(05 Marks)
b. A point charge, $\mathrm{Q}=18 \mathrm{nC}$ has a velocity of $5 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in the direction
$\hat{a}=0.6 \hat{a}_{x}+0.75 \hat{\mathrm{a}}_{\mathrm{y}}+0.3 \hat{\mathrm{a}}_{z}$. Calculate the magnitude of the force exerted on the charge by the field $\vec{B}=-3 \hat{a}_{x}+4 \hat{a}_{y}+6 \hat{a}_{z}, m T$.
(05 Marks)
c. Three infinitely long parallel filaments each carry 50 A in the $\hat{\mathrm{a}}_{\mathrm{z}}$ direction. If the filament lie in the plane, $\mathrm{x}=0$ with a 2 cm spacing between wires, find the vector fore per meter on each filament.
(06 Marks)

OR

8 a. Obtain the boundary conditions at the interface between two magnetic materials. ($\mathbf{0 5}$ Marks)
b. Find Magnetization in magnetic material where
i) $\mu=1.8 \times 10^{-5} \mathrm{H} / \mathrm{m}$ and $\mathrm{H}=120 \mathrm{~A} / \mathrm{m}$
ii) $\mathrm{B}=300 \mu \mathrm{~T}$ and $\mathrm{X}_{\mathrm{m}}=15$.
(05 Marks)
c. Explain briefly the following as applicable to magnetic materials :
i) Magnetization
ii) Permeability
iii) Potential energy.
(06 Marks)

Module-5

9 a. Write Maxwell's equations in integral form and word statement form for free space.
(06 Marks)
b. In a certain dielectric medium, $\mathrm{C}_{\mathrm{r}}=5, \sigma=0$ and displacement current density
$\vec{J}_{\mathrm{d}}=20 \cos \left(1.5 \times 10^{8} \mathrm{t}-\mathrm{bx}\right) \hat{\mathrm{a}}_{\mathrm{y}}, \mu \mathrm{A} / \mathrm{m}^{2}$. Determine electric flux density and electric field intensity.
(06 Marks)
c. A radial magnetic field $\overrightarrow{\mathrm{H}}=\underbrace{2.239 \times 10^{6}}_{\mathrm{r}} \cos \phi \hat{\mathrm{a}}_{\mathrm{r}}, \mathrm{a} / \mathrm{m}$ exists in free space. Find the magnetic flux, ϕ crossing the surface defined by $-\frac{\pi}{4} \leq \phi \leq \frac{\pi}{4}, 0 \leq \mathrm{z} \leq 1, \mathrm{~m}$.
(04 Marks)

OR

10 a. Discuss the wave propagation of a uniform plane wave in a good conducting medium.
(06 Marks)
b. Derive the relation between $\overrightarrow{\mathrm{E}}$ and $\overrightarrow{\mathrm{H}}$ for a perfect dielectric medium.
(05 Marks)
c. Determine the skin depth for copper with conductivity of $58 \times 10^{6}, \mathrm{~S} / \mathrm{m}$ at a frequency, 10 MHz . Also find α, β and V_{p}.
(05 Marks)

