

Third Semester B.E. Degree Examination, Aug./Sept.2020 **Engineering Electromagnetics**

Time: 3 hrs.

Max. Marks: 80

15EC36

(04 Marks)

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Define Electric Field Intensity, \vec{E} . Find \vec{E} at $(2, \frac{\pi}{2}, \frac{\pi}{6})$ due to a point charge located at 1 a.

origin. Let Q = 40nC.

- b. Point charges of 120nC are located at A (0, 0, 1) and B(0, 0, -1) in free space. Find \vec{E} at P(x, 0, 0). Also find the maximum value of \vec{E} . (06 Marks)
- c. Uniform line charges of 120 nC/m each lie along the entire extent of the three co-ordinate axes. Assuming free space conditions, find \vec{E} at P(-3, 2, -1)m. (06 Marks)

OR

- 2 Derive an expression for electric field intensity at a point in cylindrical coordinate system a. due to an infinite line charge distribution on Z - axis. (06 Marks)
 - b. A point charge $Q_1 = 10 \ \mu C$ is located at $P_1(1, 2, 3)$ m in free space while $Q_2 = -5\mu C$ is at $P_2(1, 2, 10)m$. i) Find vector force exerted on Q_2 by Q_1 ii) Also, find the co-ordinates of P₃ at which a point charge Q₃ experiences no force. (07 Marks)
 - c. Find the total electric flux crossing an infinite plane at y = 0 due to the following charge distributions : • a point charge, 30nC located at (1, 2, 3).
 - Two line charge distributions of 10nC/m each located in x = 0 plane at $y = \pm 2m$ extending over a length of 4m. (03 Marks)

Module-2

- Define 'Divergence of a Vector' and 'Gradient of a Scalar'. 3 (04 Marks) a. Derive the point form of Gauss's law. (06 Marks) b.
 - Give the flux density, $\vec{D} = \frac{5\sin\theta\cos\phi}{4}\hat{a}_r$, c/m². Find Volume charge density c.
 - Total charge contained in the region, r < 2m.
 - Total electric flux leaving the surface, r = 2m.

OR

- The value of \vec{E} at $P(\rho = 2 , \phi = 40^{\circ}, Z = 3)$ is given by $\vec{E} = 100 \hat{a}_{\rho} 200 \hat{a}_{\phi} + 300 \hat{a}_{z}$, V/m. Determine the incremental work required to move a $20\mu C$ charge a distance of $6\mu m$ in the direction of : i) \hat{a}_{0} iii) $\hat{G} = \hat{a}_{0} + 3 \hat{a}_{0} - 2 \hat{a}_{z}$. ii) E (06 Marks) b. State and explain continuity equation of current. (05 Marks)
 - Given the potential field $V = 2x^2y 80$, and a point, P(2, 3, -4) in free space, find at 'P'. c.

i) V ii)
$$\vec{E}$$
 iii) $\frac{dV}{dN}$ iv) \hat{a}_N

Where \hat{a}_{N} is the unit vector normal to equipotential surface?

(05 Marks)

(06 Marks)

Module-3

Conducting plates at Z = 2cm and Z = 8cm are held at potentials of -3V and 9V respectively. 5 a. The region between the plates is filled with a perfect dielectric of $\varepsilon = 5\varepsilon_0$. Find V, \vec{E} and \vec{D} in the region between the plates.

(06 Marks)

(05 Marks)

- b. Let $V = \frac{\cos 2\phi}{\rho}$ volts in free space. Find volume charge density at P(5, 60⁰, 1) using Poisson's equation. (05 Marks)
- c. State the following : i) Uniqueness theorem ii) Ampere's law iii) Stoke's theorem. (05 Marks)

OR

6 a. Explain Scalar and Vector magnetic potentials.

- b. Verify Stoke's theorem for $\vec{H} = 2r \cos \theta \ \hat{a}_r + r \ \hat{a}_{\phi}$ for the path defined by $0 \le r \le 1$ and $0 \le \theta \le 90^0$. (06 Marks)
- c. The magnetic field intensity is given by $\vec{H} = 0.1 \text{ y}^3 \hat{a}_x + 0.4 \text{ x} \hat{a}_z$, A/m. Determine the current flow through the path P₁(5, 4, 1) to P₂(5, 6, 1) to P₃(0, 6, 1) to (0, 4, 1). Also find current density, \vec{J} . (05 Marks)

Module-4

- 7 a. Obtain an expression for magnetic force between differential current elements. (05 Marks) b. A point charge, Q = 18 nC has a velocity of 5×10^6 m/s in the direction
 - $\hat{a} = 0.6 \ \hat{a}_x + 0.75 \ \hat{a}_y + 0.3 \ \hat{a}_z$. Calculate the magnitude of the force exerted on the charge by the field $\vec{B} = -3 \ \hat{a}_x + 4 \ \hat{a}_y + 6 \ \hat{a}_z$, mT. (05 Marks)
 - c. Three infinitely long parallel filaments each carry 50A in the \hat{a}_z direction. If the filament lie in the plane, x = 0 with a 2cm spacing between wires, find the vector fore per meter on each filament. (06 Marks)

OR

- 8 a. Obtain the boundary conditions at the interface between two magnetic materials. (05 Marks)
 b. Find Magnetization in magnetic material where
 - i) $\mu = 1.8 \times 10^{-5}$ H/m and H = 120 A/m ii) B = 300 μ T and X_m = 15. (05 Marks) c. Explain briefly the following as applicable to magnetic materials :
 - i) Magnetization ii) Permeability iii) Potential energy. (06 Marks)

Module-5

9 a. Write Maxwell's equations in integral form and word statement form for free space.

b. In a certain dielectric medium, $\varepsilon_r = 5$, $\sigma = 0$ and displacement current density $\vec{J}_d = 20 \cos (1.5 \times 10^8 \text{ t} - \text{ bx}) \hat{a}_y$, $\mu \text{A/m}^2$. Determine electric flux density and electric field intensity. (06 Marks)

c. A radial magnetic field $\vec{H} = \frac{2.239 \times 10^6}{r} \cos \phi \hat{a}_r$, a/m exists in free space. Find the magnetic

flux, ϕ crossing the surface defined by $-\frac{\pi}{4} \le \phi \le \frac{\pi}{4}$, $0 \le z \le 1$, m. (04 Marks)

OR

- 10 a. Discuss the wave propagation of a uniform plane wave in a good conducting medium. (06 Marks)
 - b. Derive the relation between E and H for a perfect dielectric medium. (05 Marks)
 - c. Determine the skin depth for copper with conductivity of 58×10^6 , S/m at a frequency, 10 MHz. Also find α , β and V_p. (05 Marks)